This workshop is to highlight recent research, development, and evaluation of ICN/NDN in real world applications as well as to stimulate more discussions in the area. The workshop has a particular interest in real world applications of ICN/NDN in challenging communication environments, where IP-based solutions are excessively complex or simply do not work. This workshop will offer a venue for researchers from both industry and academia to demonstrate their recent progress in applying ICN/NDN in this problem space as well as identify potential opportunities and research gaps.

The topics include experimental validation of Information Centric Networking/Named Data Networking solutions for the following real world applications:

- ICN/NDN applications for Internet-of-Things
- ICN/NDN applications for smart vehicles
- ICN/NDN applications for Smart Grid and other critical infrastructure
- ICN/NDN for content dissemination
- ICN/NDN applications for mobility support
- Social networking applications
- ICN/NDN applications on Real-time audio and video communications
- ICN/NDN for infrastructure sharing
- ICN/NDN applications within disaster scenarios and contested environments

- ICN/NDN routing for challenged communication environments
- Supporting high assurance ICN applications in challenged communication environments
- Real deployment and case studies of ICN in challenged communication environments
- QoS-aware NDN functionalities for challenged communication environments
- Efficient and effective ICN caching policies for challenged communication environments
- Modeling, analysis and characterization of ICN/NDN functionalities in challenged communication network

Organizing Committee

Workshop Co-Chairs
Alexander Afanasyev
Florida International University

Tamer Refaei
The MITRE Corporation

Hidenori Nakazato
Waseda University, Japan

Steering Committee
Jeff Burke
UCLA

Lixia Zhang
UCLA

Toru Hasegawa
Osaka University, Japan

Dirk Kutscher
Huawei, Germany

Hidetaka Wang
University of Memphis

Beichuan Zhang
University of Arizona

Technical Program Committee
- Mayutin Arumathurai (Göttingen University, Germany)
- Hitoshi Asaeda (NICT, Japan)
- Lufti Benmohamed (NIST)
- Mauro Conti (University of Padua, Italy)
- Pedro de-la-Heras-Quirós (Universidad Rey Juan Carlos, Spain)
- Kenichi Fukuda (Fujitsu Laboratory Limited, Japan)
- Creighton Hager (MITRE)
- Toru Hasegawa (Osaka University, Japan)
- Jiro Katto (Waseda University, Japan)
- Yuki Koizumi (Osaka University, Japan)
- Dirk Kutscher (Huawei, Germany)
- Craig Lee (The Aerospace Corporation)
- Jun Li (Florida International University)
- Nicola Bledini Melazzi (University of Rome – Tor Vergata, Italy)
- Sathyajayant Misra (New Mexico State University)
- Marie-Jose Montpetit (MIT Media Laboratory)
- Kenichi Nakamura (Panasonic, Japan)
- Börje Ohlman (Ericsson, Sweden)
- Christos Papadopoulos, Colorado State University USA
- Yong Jin Park, Waseda University Japan
- Ioannis Paaras (UCL, UK)
- Giuseppe Piro (Politecnico di Bari, Italy)
- Thomas Schmidt (Hamburg University of Applied Sciences, Germany)
- Eve Schoonder (Intel Corporation USA)
- Jan Seedorf (HFT Stuttgart, Germany)
- Weitao Shang (Snapchat)
- Thomas Silverston (Loria , France)
- Atsushi Tagami (KDDI Laboratory, Japan)
- Lan Wang (University of Memphis)
- Jun Wu (Shanghai Jiao Tong University, China)
- Tomohiko Togawa (NEC, Japan)
- Yingyi Yu (Facebook)
- Daniel Zappala (Brigham Young University)
- Beichuan Zhang (University of Arizona)
- Lixia Zhang (University of California at Los Angeles)
- Yu Zhang (Harbin Institute of Technology, P.R. China)
- Zhenshu Zhou (North China Electric Power University, China)